theorem
Newton.lintegral_mul_mul_le_three_holder
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f g h : α → ENNReal}
{p q r : ENNReal}
(hpqr : 1 / p + 1 / q + 1 / r = 1)
(hp_top : p ≠ ⊤)
(hq_top : q ≠ ⊤)
(hr_top : r ≠ ⊤)
(hf : AEMeasurable f μ)
(hg : AEMeasurable g μ)
(hh : AEMeasurable h μ)
:
theorem
Newton.young_exponent_to_three_holder
{p q r : ENNReal}
(hp : 1 ≤ p)
(hq : 1 ≤ q)
(hr : 1 ≤ r)
(hp_ne_top : p ≠ ⊤)
(hq_ne_top : q ≠ ⊤)
(hr_ne_top : r ≠ ⊤)
(hpqr : 1 / p + 1 / q = 1 + 1 / r)
:
Derive three-function Hölder exponent condition from Young exponent condition Note: p, q, r ≠ ⊤ is required (because ⊤/⊤ = 0 in ENNReal)
theorem
Newton.lintegral_eq_zero_iff_ae_eq_zero
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f : α → ENNReal}
(hf : AEMeasurable f μ)
:
Characterization of vanishing lintegral in terms of a.e. vanishing (ℝ≥0∞-valued).
theorem
Newton.ae_eq_zero_of_lintegral_mul_eq_zero_left
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f g : α → ENNReal}
(hg_pos : ∀ᵐ (x : α) ∂μ, 0 < g x)
(hf_meas : AEMeasurable f μ)
(hg_meas : AEMeasurable g μ)
(h_int : ∫⁻ (x : α), f x * g x ∂μ = 0)
:
If the product f * g has zero integral and g is strictly positive a.e.,
then f vanishes a.e. (ℝ≥0∞-valued version).
theorem
Newton.ae_eq_zero_of_lintegral_mul_eq_zero_right
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{f g : α → ENNReal}
(hf_pos : ∀ᵐ (x : α) ∂μ, 0 < f x)
(hf_meas : AEMeasurable f μ)
(hg_meas : AEMeasurable g μ)
(h_int : ∫⁻ (x : α), f x * g x ∂μ = 0)
:
Symmetric version of ae_eq_zero_of_lintegral_mul_eq_zero_left.
theorem
Newton.eLpNorm_translate_right
{G : Type u_1}
[AddCommGroup G]
[MeasurableSpace G]
[TopologicalSpace G]
[MeasurableAdd₂ G]
{μ : MeasureTheory.Measure G}
[μ.IsAddHaarMeasure]
(f : G → ℂ)
(p : ENNReal)
(a : G)
(hf : MeasureTheory.AEStronglyMeasurable f μ)
: