Documentation

Newton.Analysis.Convolution.Auxiliary

theorem Newton.lintegral_mul_mul_le_three_holder {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g h : αENNReal} {p q r : ENNReal} (hpqr : 1 / p + 1 / q + 1 / r = 1) (hp_top : p ) (hq_top : q ) (hr_top : r ) (hf : AEMeasurable f μ) (hg : AEMeasurable g μ) (hh : AEMeasurable h μ) :
∫⁻ (x : α), f x * g x * h x μ (∫⁻ (x : α), f x ^ p.toReal μ) ^ (1 / p.toReal) * (∫⁻ (x : α), g x ^ q.toReal μ) ^ (1 / q.toReal) * (∫⁻ (x : α), h x ^ r.toReal μ) ^ (1 / r.toReal)
theorem Newton.young_exponent_p_le_r {p q r : ENNReal} (hq : 1 q) (hpqr : 1 / p + 1 / q = 1 + 1 / r) :
p r
theorem Newton.young_exponent_q_le_r {p q r : ENNReal} (hp : 1 p) (hpqr : 1 / p + 1 / q = 1 + 1 / r) :
q r

Auxiliary lemma to derive q ≤ r from Young exponent condition

theorem Newton.young_exponent_r_ge_one {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hpqr : 1 / p + 1 / q = 1 + 1 / r) :
1 r

Auxiliary lemma to derive r ≥ 1 from Young exponent condition

theorem Newton.ennreal_div_mul_right {p r : ENNReal} (hp_pos : p 0) (hp_ne_top : p ) (hr_pos : r 0) (hr_ne_top : r ) :
r / (p * r) = 1 / p

Auxiliary lemma showing r / (p * r) = 1/p in ENNReal

theorem Newton.ennreal_div_mul_left {p r : ENNReal} (hp_pos : p 0) (hp_ne_top : p ) (hr_pos : r 0) (hr_ne_top : r ) :
p / (p * r) = 1 / r

Auxiliary lemma showing p / (p * r) = 1/r in ENNReal

theorem Newton.ennreal_sub_div_mul {p r : ENNReal} (hp_pos : p 0) (hp_ne_top : p ) (hr_pos : r 0) (hr_ne_top : r ) :
(r - p) / (p * r) = 1 / p - 1 / r

Auxiliary lemma showing (r - p) / (p * r) = 1/p - 1/r in ENNReal (when p ≤ r)

theorem Newton.young_exponent_to_three_holder {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr : 1 r) (hp_ne_top : p ) (hq_ne_top : q ) (hr_ne_top : r ) (hpqr : 1 / p + 1 / q = 1 + 1 / r) :
1 / r + (r - p) / (p * r) + (r - q) / (q * r) = 1

Derive three-function Hölder exponent condition from Young exponent condition Note: p, q, r ≠ ⊤ is required (because ⊤/⊤ = 0 in ENNReal)

theorem Newton.decomposition_exponents_pos {p q r : ENNReal} (hp : 1 p) (hq : 1 q) (hr_ne_top : r ) :
0 < p / r 0 < q / r 0 1 - p / r 0 1 - q / r

Verify that exponents used in decomposition are non-negative (can be 0 at boundary)

theorem Newton.lintegral_const_top_of_volume_univ {n : } (c : ENNReal) (hc : c 0) (hn : 0 < n) :
∫⁻ (x : Fin n), c =

For a nonzero constant c, the integral of c over the whole space is infinite when the dimension n is positive.

theorem Newton.lintegral_eq_zero_iff_ae_eq_zero {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f : αENNReal} (hf : AEMeasurable f μ) :
∫⁻ (x : α), f x μ = 0 f =ᵐ[μ] 0

Characterization of vanishing lintegral in terms of a.e. vanishing (ℝ≥0∞-valued).

theorem Newton.ae_eq_zero_of_lintegral_mul_eq_zero_left {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : αENNReal} (hg_pos : ∀ᵐ (x : α) μ, 0 < g x) (hf_meas : AEMeasurable f μ) (hg_meas : AEMeasurable g μ) (h_int : ∫⁻ (x : α), f x * g x μ = 0) :
f =ᵐ[μ] 0

If the product f * g has zero integral and g is strictly positive a.e., then f vanishes a.e. (ℝ≥0∞-valued version).

theorem Newton.ae_eq_zero_of_lintegral_mul_eq_zero_right {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : αENNReal} (hf_pos : ∀ᵐ (x : α) μ, 0 < f x) (hf_meas : AEMeasurable f μ) (hg_meas : AEMeasurable g μ) (h_int : ∫⁻ (x : α), f x * g x μ = 0) :
g =ᵐ[μ] 0

Symmetric version of ae_eq_zero_of_lintegral_mul_eq_zero_left.

theorem Newton.convolution_integrand_decomposition {n : } (f g : (Fin n)) (p q r : ENNReal) (hp : 1 p) (hq : 1 q) (hp_ne_top : p ) (hq_ne_top : q ) (hr_ne_top : r ) (hpqr : 1 / p + 1 / q = 1 + 1 / r) (x y : Fin n) :
f y * g (x - y) = f y ^ (p / r).toReal * g (x - y) ^ (q / r).toReal * f y ^ (1 - p / r).toReal * g (x - y) ^ (1 - q / r).toReal