Documentation

Newton.Gauge.LieAlgebra

structure Newton.SuNAlgebra (N : ) :

Lie algebra su(N) of SU(N) N×N complex matrices A satisfying:

  1. Traceless: Tr(A) = 0
  2. Anti-Hermitian: A† = -A (where † denotes conjugate transpose)
Instances For

    Zero element

    Equations

    Addition

    Equations

    Negation

    Equations

    Subtraction

    Equations

    Real scalar multiplication (su(N) is a real vector space)

    Equations
    theorem Newton.SuNAlgebra.ext {N : } {A B : SuNAlgebra N} (h : A.matrix = B.matrix) :
    A = B

    Equality via matrix equality

    @[simp]

    SuNAlgebra equality is equivalent to matrix equality

    theorem Newton.SuNAlgebra.ext_matrix {N : } {A : SuNAlgebra N} (h : A.matrix = 0) :
    A = 0

    If matrix is zero, then the element is zero

    @[simp]

    Zero element has zero matrix

    @[simp]
    theorem Newton.SuNAlgebra.add_matrix {N : } (A B : SuNAlgebra N) :
    (A + B).matrix = A.matrix + B.matrix

    Addition is compatible with matrix addition

    @[simp]

    Negation is compatible with matrix negation

    @[simp]
    theorem Newton.SuNAlgebra.smul_matrix {N : } (r : ) (A : SuNAlgebra N) :
    (r A).matrix = r A.matrix

    Scalar multiplication is compatible with matrix scalar multiplication

    @[simp]
    theorem Newton.SuNAlgebra.sub_matrix {N : } (A B : SuNAlgebra N) :
    (A - B).matrix = A.matrix - B.matrix

    Subtraction is compatible with matrix subtraction

    Additive commutative group instance

    Equations
    • One or more equations did not get rendered due to their size.
    noncomputable def Newton.SuNAlgebra.lie {N : } (A B : SuNAlgebra N) :

    Lie bracket [A, B] = AB - BA for SuNAlgebra

    The Lie bracket of two su(N) elements is again in su(N). Uses Mathlib's Lie bracket on the underlying matrices.

    Equations
    Instances For
      noncomputable instance Newton.instLieRingSuNAlgebra {N : } :

      LieRing instance for SuNAlgebra using Mathlib's Lie structure

      Equations
      @[simp]

      Matrix representation of Lie bracket

      Lie bracket expanded as commutator

      Jacobi identity follows from Mathlib's lie_jacobi

      Alternative form of Jacobi identity

      Real part of star z * z equals |z|² and is non-negative

      theorem Newton.Complex.re_finset_sum {α : Type u_1} (s : Finset α) (f : α) :
      (∑ is, f i).re = is, (f i).re

      Real part of a sum equals sum of real parts

      Real part of Tr(A†A) is non-negative (diagonal elements of A†A are sums of |A_ij|²)

      For non-zero matrix, Tr(M†M) > 0

      Square of an su(N) element has non-positive trace (Tr(A²) ≤ 0)

      noncomputable def Newton.killingForm {N : } [DecidableEq (Fin N)] (A B : SuNAlgebra N) :

      Killing form: B(A, B) = Tr(AB)

      Equations
      Instances For

        Killing form is symmetric

        Bilinearity of Killing form (left)

        Bilinearity of Killing form (right)