Documentation

Newton.MeasureTheory.Function.LpSpace.ContinuousDense

Continuous compactly supported functions are dense in Lp.

For any f ∈ Lp(ℝⁿ) with 1 ≤ p < ∞ and any ε > 0, there exists a continuous function g with compact support such that ‖f - g‖_p < ε.

theorem Newton.tsupport_subset_closedBall {n : } (g : (Fin n)) (hg_compact : HasCompactSupport g) :
∃ (R : ), tsupport g Metric.closedBall 0 R 1 R

Any compactly supported function has its topological support contained in some closed ball of radius at least 1.

theorem Newton.eLpNorm_triangle_ineq_lt {n : } {g φ₀ ψ : (Fin n)} (p : ENNReal) (hp_one : 1 p) (hg_cont : Continuous g) (hφ₀_smooth : ContDiff (↑) φ₀) (hψ_cont : Continuous ψ) {ε : } (h_term_support : MeasureTheory.eLpNorm (fun (x : Fin n) => g x - φ₀ x) p MeasureTheory.volume < ENNReal.ofReal (ε / 2)) (h_term_cutoff : MeasureTheory.eLpNorm (fun (x : Fin n) => φ₀ x - ψ x) p MeasureTheory.volume < ENNReal.ofReal (ε / 2)) (hε_half : 0 < ε / 2) :
theorem Newton.phi0_eq_zero_outside_enlarged_ball {n : } (φ₀ : (Fin n)) (R : ) (h_support : tsupport φ₀ Metric.closedBall 0 (R + 1)) x : Fin n :
R + 1 < xφ₀ x = 0
theorem Newton.mollifier_compactSupport_Lp_approx {n : } (p : ENNReal) (hp_one : 1 p) (g : (Fin n)) (hg_cont : Continuous g) (hg_compact : HasCompactSupport g) {ε : } ( : 0 < ε) :
∃ (φ : (Fin n)), ContDiff (↑) φ MeasureTheory.eLpNorm (fun (x : Fin n) => g x - φ x) p MeasureTheory.volume < ENNReal.ofReal ε MeasureTheory.MemLp φ p MeasureTheory.volume

Approximating a continuous compactly supported function by a smooth function in Lᵖ.

theorem Newton.smooth_cutoff_compactSupport_Lp_aux {n : } (p : ENNReal) (hp_one : 1 p) (g : (Fin n)) (hg_cont : Continuous g) (hg_compact : HasCompactSupport g) {ε : } ( : 0 < ε) :

Auxiliary lemma: smoothly cut off a continuous compactly supported function while keeping control of the Lᵖ error.

theorem Newton.smooth_cutoff_compactSupport_Lp {n : } (p : ENNReal) (hp_one : 1 p) (hp_ne_top : p ) (φ : (Fin n)) (hφ_smooth : ContDiff (↑) φ) (hφ_memLp : MeasureTheory.MemLp φ p MeasureTheory.volume) {R : } (hR_pos : 0 < R) {ε : } ( : 0 < ε) :

Cutting off a smooth function so that it has compact support while keeping control of the Lᵖ error.

theorem Newton.smooth_compactSupport_to_schwartz {n : } (g : (Fin n)) (hg_smooth : ContDiff (↑) g) (hg_support : HasCompactSupport g) :
∃ (φ : SchwartzMap (Fin n) ), φ = g

Smooth compactly supported functions are Schwartz.

theorem Newton.integrable_tail_small {n : } (f : (Fin n)) (hf : MeasureTheory.MemLp f 1 MeasureTheory.volume) {ε : } ( : 0 < ε) :
R > 0, (x : Fin n) in {x : Fin n | R x}, f x < ε

Tail estimate for integrable functions on ℝⁿ (placeholder).

theorem Newton.tail_bound_mono {n : } (F : (Fin n)) {R₁ R₂ ε : } (hR : R₁ R₂) (h_nonneg : ∀ (x : Fin n), 0 F x) (h_int : MeasureTheory.Integrable F (MeasureTheory.volume.restrict {x : Fin n | R₁ x})) (h_bound : (x : Fin n) in {x : Fin n | R₁ x}, F x < ε) :
(x : Fin n) in {x : Fin n | R₂ x}, F x < ε

Monotonicity of tail integrals with respect to the radius (placeholder).