theorem
Newton.continuous_compactSupport_dense_Lp
{n : ℕ}
(p : ENNReal)
(hp_ne_top : p ≠ ⊤)
(f : (Fin n → ℝ) → ℂ)
(hf : MeasureTheory.MemLp f p MeasureTheory.volume)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (g : (Fin n → ℝ) → ℂ),
Continuous g ∧ HasCompactSupport g ∧ MeasureTheory.MemLp g p MeasureTheory.volume ∧ MeasureTheory.eLpNorm (f - g) p MeasureTheory.volume < ENNReal.ofReal ε
Continuous compactly supported functions are dense in Lp.
For any f ∈ Lp(ℝⁿ) with 1 ≤ p < ∞ and any ε > 0, there exists a continuous function g with compact support such that ‖f - g‖_p < ε.
theorem
Newton.tsupport_subset_closedBall
{n : ℕ}
(g : (Fin n → ℝ) → ℂ)
(hg_compact : HasCompactSupport g)
:
Any compactly supported function has its topological support contained in some closed ball of radius at least 1.
theorem
Newton.eLpNorm_triangle_ineq_lt
{n : ℕ}
{g φ₀ ψ : (Fin n → ℝ) → ℂ}
(p : ENNReal)
(hp_one : 1 ≤ p)
(hg_cont : Continuous g)
(hφ₀_smooth : ContDiff ℝ (↑⊤) φ₀)
(hψ_cont : Continuous ψ)
{ε : ℝ}
(h_term_support :
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => g x - φ₀ x) p MeasureTheory.volume < ENNReal.ofReal (ε / 2))
(h_term_cutoff :
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => φ₀ x - ψ x) p MeasureTheory.volume < ENNReal.ofReal (ε / 2))
(hε_half : 0 < ε / 2)
:
theorem
Newton.mollifier_compactSupport_Lp_approx
{n : ℕ}
(p : ENNReal)
(hp_one : 1 ≤ p)
(g : (Fin n → ℝ) → ℂ)
(hg_cont : Continuous g)
(hg_compact : HasCompactSupport g)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (φ : (Fin n → ℝ) → ℂ),
ContDiff ℝ (↑⊤) φ ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => g x - φ x) p MeasureTheory.volume < ENNReal.ofReal ε ∧ MeasureTheory.MemLp φ p MeasureTheory.volume
Approximating a continuous compactly supported function by a smooth function in Lᵖ.
theorem
Newton.smooth_cutoff_compactSupport_Lp_aux
{n : ℕ}
(p : ENNReal)
(hp_one : 1 ≤ p)
(g : (Fin n → ℝ) → ℂ)
(hg_cont : Continuous g)
(hg_compact : HasCompactSupport g)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (ψ : (Fin n → ℝ) → ℂ),
ContDiff ℝ (↑⊤) ψ ∧ HasCompactSupport ψ ∧ MeasureTheory.MemLp ψ p MeasureTheory.volume ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => g x - ψ x) p MeasureTheory.volume < ENNReal.ofReal ε
Auxiliary lemma: smoothly cut off a continuous compactly supported function while
keeping control of the Lᵖ error.
theorem
Newton.smooth_cutoff_compactSupport_Lp
{n : ℕ}
(p : ENNReal)
(hp_one : 1 ≤ p)
(hp_ne_top : p ≠ ⊤)
(φ : (Fin n → ℝ) → ℂ)
(hφ_smooth : ContDiff ℝ (↑⊤) φ)
(hφ_memLp : MeasureTheory.MemLp φ p MeasureTheory.volume)
{R : ℝ}
(hR_pos : 0 < R)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (ψ : (Fin n → ℝ) → ℂ),
ContDiff ℝ (↑⊤) ψ ∧ HasCompactSupport ψ ∧ MeasureTheory.MemLp ψ p MeasureTheory.volume ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => φ x - ψ x) p MeasureTheory.volume < ENNReal.ofReal ε
Cutting off a smooth function so that it has compact support while keeping control of the
Lᵖ error.
theorem
Newton.smooth_compactSupport_to_schwartz
{n : ℕ}
(g : (Fin n → ℝ) → ℂ)
(hg_smooth : ContDiff ℝ (↑⊤) g)
(hg_support : HasCompactSupport g)
:
∃ (φ : SchwartzMap (Fin n → ℝ) ℂ), ⇑φ = g
Smooth compactly supported functions are Schwartz.
theorem
Newton.tail_bound_mono
{n : ℕ}
(F : (Fin n → ℝ) → ℝ)
{R₁ R₂ ε : ℝ}
(hR : R₁ ≤ R₂)
(h_nonneg : ∀ (x : Fin n → ℝ), 0 ≤ F x)
(h_int : MeasureTheory.Integrable F (MeasureTheory.volume.restrict {x : Fin n → ℝ | R₁ ≤ ‖x‖}))
(h_bound : ∫ (x : Fin n → ℝ) in {x : Fin n → ℝ | R₁ ≤ ‖x‖}, F x < ε)
:
Monotonicity of tail integrals with respect to the radius (placeholder).