Documentation

Newton.MeasureTheory.Integral.Holder

Conjugate exponent relation.

For 1 ≤ p ≤ ∞, the conjugate exponent q satisfies 1/p + 1/q = 1.

Equations
Instances For
    theorem Newton.holder_inequality_one_infty {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] (f : αE) (g : αF) (hf : MeasureTheory.Integrable f μ) (hg_ae : MeasureTheory.AEStronglyMeasurable g μ) (hg_bound : ∃ (C : ), ∀ᵐ (x : α) μ, g x C) :
    (x : α), f x * g x μ ( (x : α), f x μ) * sInf {C : | ∀ᵐ (x : α) μ, g x C}

    Hölder's inequality (basic form for p = 1, q = ∞).

    For any measurable functions f and g: ∫ |f · g| dμ ≤ ‖f‖{L^1} · ‖g‖{L^∞}

    theorem Newton.holder_inequality {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {E : Type u_2} {F : Type u_3} [NormedAddCommGroup E] [NormedAddCommGroup F] (p q : ENNReal) (hpq : IsConjugateExponent p q) (f : αE) (g : αF) (hf : MeasureTheory.MemLp f p μ) (hg : MeasureTheory.MemLp g q μ) :

    Hölder's inequality (general form with eLpNorm).

    For conjugate exponents 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1: ∫ |f · g| dμ ≤ ‖f‖{L^p(μ)} · ‖g‖{L^q(μ)}

    theorem Newton.memLp_mul_of_memLp_conjugate {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hpq : IsConjugateExponent p q) (f g : α) (hf : MeasureTheory.MemLp f p μ) (hg : MeasureTheory.MemLp g q μ) :
    MeasureTheory.Integrable (fun (x : α) => f x * g x) μ
    theorem Newton.eLpNorm_toReal_pos_of_ae_pos {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p : ENNReal) (hp : 1 < p) (f : α) (hf : MeasureTheory.MemLp f p μ) (hf_pos : ∀ᵐ (x : α) μ, 0 < f x) (hμ_pos : μ Set.univ 0) :
    theorem Newton.conjugate_exponent_formula (p : ENNReal) (hp : 1 < p) (hp_top : p < ) :

    Conjugate exponent computation.

    Compute the conjugate exponent explicitly from p.

    theorem Newton.holder_kernel_pairing_bound {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {E : Type u_2} [NormedAddCommGroup E] {β : Type u_4} [MeasurableSpace β] {ν : MeasureTheory.Measure β} [NormedSpace E] [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] (p q : ENNReal) (hpq : IsConjugateExponent p q) {F : αβE} {φ : α} (hF_meas : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν)) (hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν)) (hF_memLp : ∀ᵐ (y : β) ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ) (hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν) (hφ_mem : MeasureTheory.MemLp φ q μ) :
    | (x : α), (y : β), F x y ν * φ x μ| (MeasureTheory.eLpNorm φ q μ).toReal * (y : β), (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal ν

    Auxiliary estimate used in the proof of Minkowski's integral inequality. It bounds the pairing between the norm of a fibrewise integral and a dual element of L^q.