theorem
Newton.holder_inequality_one_infty
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
(f : α → E)
(g : α → F)
(hf : MeasureTheory.Integrable f μ)
(hg_ae : MeasureTheory.AEStronglyMeasurable g μ)
(hg_bound : ∃ (C : ℝ), ∀ᵐ (x : α) ∂μ, ‖g x‖ ≤ C)
:
Hölder's inequality (basic form for p = 1, q = ∞).
For any measurable functions f and g: ∫ |f · g| dμ ≤ ‖f‖{L^1} · ‖g‖{L^∞}
theorem
Newton.holder_inequality
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{E : Type u_2}
{F : Type u_3}
[NormedAddCommGroup E]
[NormedAddCommGroup F]
(p q : ENNReal)
(hpq : IsConjugateExponent p q)
(f : α → E)
(g : α → F)
(hf : MeasureTheory.MemLp f p μ)
(hg : MeasureTheory.MemLp g q μ)
:
Hölder's inequality (general form with eLpNorm).
For conjugate exponents 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1: ∫ |f · g| dμ ≤ ‖f‖{L^p(μ)} · ‖g‖{L^q(μ)}
theorem
Newton.memLp_mul_of_memLp_conjugate
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
(p q : ENNReal)
(hpq : IsConjugateExponent p q)
(f g : α → ℝ)
(hf : MeasureTheory.MemLp f p μ)
(hg : MeasureTheory.MemLp g q μ)
:
MeasureTheory.Integrable (fun (x : α) => f x * g x) μ
theorem
Newton.eLpNorm_toReal_pos_of_ae_pos
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
(p : ENNReal)
(hp : 1 < p)
(f : α → ℝ)
(hf : MeasureTheory.MemLp f p μ)
(hf_pos : ∀ᵐ (x : α) ∂μ, 0 < f x)
(hμ_pos : μ Set.univ ≠ 0)
:
theorem
Newton.conjugate_exponent_formula
(p : ENNReal)
(hp : 1 < p)
(hp_top : p < ⊤)
:
∃ (q : ENNReal), IsConjugateExponent p q ∧ q = ENNReal.ofReal (p.toReal / (p.toReal - 1))
Conjugate exponent computation.
Compute the conjugate exponent explicitly from p.
theorem
Newton.holder_kernel_pairing_bound
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{E : Type u_2}
[NormedAddCommGroup E]
{β : Type u_4}
[MeasurableSpace β]
{ν : MeasureTheory.Measure β}
[NormedSpace ℝ E]
[MeasureTheory.SFinite μ]
[MeasureTheory.SFinite ν]
(p q : ENNReal)
(hpq : IsConjugateExponent p q)
{F : α → β → E}
{φ : α → ℝ}
(hF_meas : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν))
(hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν))
(hF_memLp : ∀ᵐ (y : β) ∂ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ)
(hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν)
(hφ_mem : MeasureTheory.MemLp φ q μ)
:
Auxiliary estimate used in the proof of Minkowski's integral inequality. It bounds the pairing
between the norm of a fibrewise integral and a dual element of L^q.