theorem
Newton.inner_integral_bound
{n : ℕ}
(f g : (Fin n → ℝ) → ℂ)
(p q r : ENNReal)
(hp : 1 ≤ p)
(hq : 1 ≤ q)
(hr : 1 ≤ r)
(hp_ne_top : p ≠ ⊤)
(hq_ne_top : q ≠ ⊤)
(hr_ne_top : r ≠ ⊤)
(hpqr : 1 / p + 1 / q = 1 + 1 / r)
(hf : MeasureTheory.MemLp f p MeasureTheory.volume)
(hg : MeasureTheory.MemLp g q MeasureTheory.volume)
(x : Fin n → ℝ)
:
Inner integral bound for fixed x
theorem
Newton.young_convolution_r_ne_top
{n : ℕ}
(f g : (Fin n → ℝ) → ℂ)
(p q r : ENNReal)
(hp : 1 ≤ p)
(hq : 1 ≤ q)
(hr : 1 ≤ r)
(hp_ne_top : p ≠ ⊤)
(hq_ne_top : q ≠ ⊤)
(hr_ne_top : r ≠ ⊤)
(hpqr : 1 / p + 1 / q = 1 + 1 / r)
(hf : MeasureTheory.MemLp f p MeasureTheory.volume)
(hg : MeasureTheory.MemLp g q MeasureTheory.volume)
:
MeasureTheory.MemLp (fun (x : Fin n → ℝ) => ∫ (y : Fin n → ℝ), f (x - y) * g y) r MeasureTheory.volume ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => ∫ (y : Fin n → ℝ), f (x - y) * g y) r MeasureTheory.volume ≤ MeasureTheory.eLpNorm f p MeasureTheory.volume * MeasureTheory.eLpNorm g q MeasureTheory.volume