Documentation

Newton.Analysis.Distribution.SchwartzDensity

theorem Newton.exists_smooth_cutoff {n : } (r R : ) (hr : 0 < r) (hR : r < R) :
∃ (χ : (Fin n)), ContDiff (↑) χ (∀ (x : Fin n), x rχ x = 1) (∀ (x : Fin n), 0 χ x χ x 1) HasCompactSupport χ tsupport χ Metric.closedBall 0 R
theorem Newton.exists_mollifier_scale {n : } (f₀ : (Fin n)) (hf₀_L1 : MeasureTheory.MemLp f₀ 1 MeasureTheory.volume) (hf₀_L2 : MeasureTheory.MemLp f₀ 2 MeasureTheory.volume) (ε₁ ε₂ : ) (hε₁ : 0 < ε₁) (hε₂ : 0 < ε₂) :
∃ (η : ) (_ : 0 < η) (_ : η 1) (ψ : (Fin n)), ContDiff (↑) ψ HasCompactSupport ψ (x : Fin n), ψ x = 1 (∀ (x : Fin n), 0 ψ x) tsupport ψ Metric.closedBall 0 1 have ψ_η := fun (x : Fin n) => η ^ (-n) * ψ fun (i : Fin n) => x i / η; have φ := fun (x : Fin n) => (y : Fin n), f₀ (x - y) * (ψ_η y); MeasureTheory.eLpNorm (fun (x : Fin n) => f₀ x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε₁ MeasureTheory.eLpNorm (fun (x : Fin n) => f₀ x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε₂
theorem Newton.cutoff_L1_bound {n : } (f f_cut : (Fin n)) (hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume) (χ : (Fin n)) (R ε_tail₁ : ) (hχ_nonneg : ∀ (x : Fin n), 0 χ x) (hχ_le_one : ∀ (x : Fin n), χ x 1) (hf_cut_def : f_cut = fun (x : Fin n) => (χ x) * f x) (h_diff_zero_inside : ∀ {x : Fin n}, x Rf x - f_cut x = 0) (hf_tail_L1 : (x : Fin n) in {x : Fin n | R x}, f x < ε_tail₁) (htail₁ : 0 < ε_tail₁) :
MeasureTheory.eLpNorm (fun (x : Fin n) => f x - f_cut x) 1 MeasureTheory.volume ENNReal.ofReal ε_tail₁
theorem Newton.cutoff_L2_bound {n : } (f f_cut : (Fin n)) (χ : (Fin n)) (R ε_tail₂ : ) (hχ_nonneg : ∀ (x : Fin n), 0 χ x) (hχ_le_one : ∀ (x : Fin n), χ x 1) (hf_cut_def : f_cut = fun (x : Fin n) => (χ x) * f x) (h_diff_zero_inside : ∀ {x : Fin n}, x Rf x - f_cut x = 0) (hf_tail_L2 : MeasureTheory.eLpNorm (fun (x : Fin n) => f x) 2 (MeasureTheory.volume.restrict {x : Fin n | R x}) < ENNReal.ofReal ε_tail₂) :
MeasureTheory.eLpNorm (fun (x : Fin n) => f x - f_cut x) 2 MeasureTheory.volume ENNReal.ofReal ε_tail₂
theorem Newton.cutoff_then_convolve_Lp {n : } (f : (Fin n)) (hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume) (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) (R : ) (hR : 0 < R) {ε ε_cut₁ ε_cut₂ ε_tail₁ ε_tail₂ : } ( : 0 < ε) (hcut₁ : 0 < ε_cut₁) (hcut₂ : 0 < ε_cut₂) (htail₁ : 0 < ε_tail₁) (htail₂ : 0 < ε_tail₂) (h_budget_L1 : ε_cut₁ + ε_tail₁ < ε) (h_budget_L2 : ε_cut₂ + ε_tail₂ < ε) (hf_tail_L1 : (x : Fin n) in {x : Fin n | R x}, f x < ε_tail₁) (hf_tail_L2 : MeasureTheory.eLpNorm (fun (x : Fin n) => f x) 2 (MeasureTheory.volume.restrict {x : Fin n | R x}) < ENNReal.ofReal ε_tail₂) :
∃ (φ : SchwartzMap (Fin n) ), tsupport φ Metric.closedBall 0 (R + 3) MeasureTheory.eLpNorm (fun (x : Fin n) => f x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε MeasureTheory.eLpNorm (fun (x : Fin n) => f x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε
theorem Newton.schwartz_dense_L1_L2_simultaneous {n : } (f : (Fin n)) (hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume) (hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume) {ε : } ( : 0 < ε) :
∃ (φ : SchwartzMap (Fin n) ), MeasureTheory.eLpNorm (fun (x : Fin n) => f x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε MeasureTheory.eLpNorm (fun (x : Fin n) => f x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε
theorem Newton.smooth_cutoff_compactSupport_Lp_real (φ : ) (hφ_smooth : ContDiff (↑) φ) (hφ_memLp : MeasureTheory.MemLp φ 2 MeasureTheory.volume) {R : } (hR_pos : 0 < R) {ε : } ( : 0 < ε) :

Variant for ℝ (n=1 case) with simultaneous L¹ and L² control.

This is the specific instance needed for the Plancherel theorem on ℝ.

theorem Newton.smooth_cutoff_compactSupport_L1_L2_real (φ : ) (hφ_smooth : ContDiff (↑) φ) (hφ_memLp₁ : MeasureTheory.MemLp φ 1 MeasureTheory.volume) (hφ_memLp₂ : MeasureTheory.MemLp φ 2 MeasureTheory.volume) {R : } (hR_pos : 0 < R) {ε : } ( : 0 < ε) :