theorem
Newton.triangle_inequality_aux
{n : ℕ}
(f g h : (Fin n → ℝ) → ℂ)
(ε ε₁ ε₂ ε₃ : ℝ)
(hf_meas : MeasureTheory.AEStronglyMeasurable f MeasureTheory.volume)
(hg_meas : MeasureTheory.AEStronglyMeasurable g MeasureTheory.volume)
(hh_meas : MeasureTheory.AEStronglyMeasurable h MeasureTheory.volume)
(hf : MeasureTheory.eLpNorm f 1 MeasureTheory.volume < ENNReal.ofReal ε₁)
(hg : MeasureTheory.eLpNorm g 1 MeasureTheory.volume < ENNReal.ofReal ε₂)
(hh : MeasureTheory.eLpNorm h 1 MeasureTheory.volume < ENNReal.ofReal ε₃)
(h_sum : ε₁ + ε₂ + ε₃ ≤ ε)
:
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x + g x + h x) 1 MeasureTheory.volume < ENNReal.ofReal ε
theorem
Newton.exists_mollifier_scale
{n : ℕ}
(f₀ : (Fin n → ℝ) → ℂ)
(hf₀_L1 : MeasureTheory.MemLp f₀ 1 MeasureTheory.volume)
(hf₀_L2 : MeasureTheory.MemLp f₀ 2 MeasureTheory.volume)
(ε₁ ε₂ : ℝ)
(hε₁ : 0 < ε₁)
(hε₂ : 0 < ε₂)
:
∃ (η : ℝ) (_ : 0 < η) (_ : η ≤ 1) (ψ : (Fin n → ℝ) → ℝ),
ContDiff ℝ (↑⊤) ψ ∧ HasCompactSupport ψ ∧ ∫ (x : Fin n → ℝ), ψ x = 1 ∧ (∀ (x : Fin n → ℝ), 0 ≤ ψ x) ∧ tsupport ψ ⊆ Metric.closedBall 0 1 ∧ have ψ_η := fun (x : Fin n → ℝ) => η ^ (-↑n) * ψ fun (i : Fin n) => x i / η;
have φ := fun (x : Fin n → ℝ) => ∫ (y : Fin n → ℝ), f₀ (x - y) * ↑(ψ_η y);
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f₀ x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε₁ ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f₀ x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε₂
theorem
Newton.cutoff_L1_bound
{n : ℕ}
(f f_cut : (Fin n → ℝ) → ℂ)
(hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume)
(χ : (Fin n → ℝ) → ℝ)
(R ε_tail₁ : ℝ)
(hχ_nonneg : ∀ (x : Fin n → ℝ), 0 ≤ χ x)
(hχ_le_one : ∀ (x : Fin n → ℝ), χ x ≤ 1)
(hf_cut_def : f_cut = fun (x : Fin n → ℝ) => ↑(χ x) * f x)
(h_diff_zero_inside : ∀ {x : Fin n → ℝ}, ‖x‖ ≤ R → f x - f_cut x = 0)
(hf_tail_L1 : ∫ (x : Fin n → ℝ) in {x : Fin n → ℝ | R ≤ ‖x‖}, ‖f x‖ < ε_tail₁)
(htail₁ : 0 < ε_tail₁)
:
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - f_cut x) 1 MeasureTheory.volume ≤ ENNReal.ofReal ε_tail₁
theorem
Newton.cutoff_L2_bound
{n : ℕ}
(f f_cut : (Fin n → ℝ) → ℂ)
(χ : (Fin n → ℝ) → ℝ)
(R ε_tail₂ : ℝ)
(hχ_nonneg : ∀ (x : Fin n → ℝ), 0 ≤ χ x)
(hχ_le_one : ∀ (x : Fin n → ℝ), χ x ≤ 1)
(hf_cut_def : f_cut = fun (x : Fin n → ℝ) => ↑(χ x) * f x)
(h_diff_zero_inside : ∀ {x : Fin n → ℝ}, ‖x‖ ≤ R → f x - f_cut x = 0)
(hf_tail_L2 :
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x) 2 (MeasureTheory.volume.restrict {x : Fin n → ℝ | R ≤ ‖x‖}) < ENNReal.ofReal ε_tail₂)
:
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - f_cut x) 2 MeasureTheory.volume ≤ ENNReal.ofReal ε_tail₂
theorem
Newton.cutoff_then_convolve_Lp
{n : ℕ}
(f : (Fin n → ℝ) → ℂ)
(hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume)
(hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume)
(R : ℝ)
(hR : 0 < R)
{ε ε_cut₁ ε_cut₂ ε_tail₁ ε_tail₂ : ℝ}
(hε : 0 < ε)
(hcut₁ : 0 < ε_cut₁)
(hcut₂ : 0 < ε_cut₂)
(htail₁ : 0 < ε_tail₁)
(htail₂ : 0 < ε_tail₂)
(h_budget_L1 : ε_cut₁ + ε_tail₁ < ε)
(h_budget_L2 : ε_cut₂ + ε_tail₂ < ε)
(hf_tail_L1 : ∫ (x : Fin n → ℝ) in {x : Fin n → ℝ | R ≤ ‖x‖}, ‖f x‖ < ε_tail₁)
(hf_tail_L2 :
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x) 2 (MeasureTheory.volume.restrict {x : Fin n → ℝ | R ≤ ‖x‖}) < ENNReal.ofReal ε_tail₂)
:
∃ (φ : SchwartzMap (Fin n → ℝ) ℂ),
tsupport ⇑φ ⊆ Metric.closedBall 0 (R + 3) ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε
theorem
Newton.schwartz_dense_L1_L2_simultaneous
{n : ℕ}
(f : (Fin n → ℝ) → ℂ)
(hf_L1 : MeasureTheory.MemLp f 1 MeasureTheory.volume)
(hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (φ : SchwartzMap (Fin n → ℝ) ℂ),
MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - φ x) 1 MeasureTheory.volume < ENNReal.ofReal ε ∧ MeasureTheory.eLpNorm (fun (x : Fin n → ℝ) => f x - φ x) 2 MeasureTheory.volume < ENNReal.ofReal ε
theorem
Newton.smooth_cutoff_compactSupport_Lp_real
(φ : ℝ → ℂ)
(hφ_smooth : ContDiff ℝ (↑⊤) φ)
(hφ_memLp : MeasureTheory.MemLp φ 2 MeasureTheory.volume)
{R : ℝ}
(hR_pos : 0 < R)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (g : ℝ → ℂ),
ContDiff ℝ (↑⊤) g ∧ HasCompactSupport g ∧ MeasureTheory.MemLp g 2 MeasureTheory.volume ∧ MeasureTheory.eLpNorm (fun (t : ℝ) => φ t - g t) 2 MeasureTheory.volume < ENNReal.ofReal ε
Variant for ℝ (n=1 case) with simultaneous L¹ and L² control.
This is the specific instance needed for the Plancherel theorem on ℝ.
theorem
Newton.smooth_cutoff_compactSupport_L1_L2_real
(φ : ℝ → ℂ)
(hφ_smooth : ContDiff ℝ (↑⊤) φ)
(hφ_memLp₁ : MeasureTheory.MemLp φ 1 MeasureTheory.volume)
(hφ_memLp₂ : MeasureTheory.MemLp φ 2 MeasureTheory.volume)
{R : ℝ}
(hR_pos : 0 < R)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (g : ℝ → ℂ),
ContDiff ℝ (↑⊤) g ∧ HasCompactSupport g ∧ MeasureTheory.MemLp g 2 MeasureTheory.volume ∧ MeasureTheory.eLpNorm (fun (t : ℝ) => φ t - g t) 1 MeasureTheory.volume < ENNReal.ofReal ε ∧ MeasureTheory.eLpNorm (fun (t : ℝ) => φ t - g t) 2 MeasureTheory.volume < ENNReal.ofReal ε
theorem
Newton.smooth_compactSupport_dense_L1_L2_real
(f : ℝ → ℂ)
(hf_L1 : MeasureTheory.Integrable f MeasureTheory.volume)
(hf_L2 : MeasureTheory.MemLp f 2 MeasureTheory.volume)
{ε : ℝ}
(hε : 0 < ε)
:
∃ (g : ℝ → ℂ),
ContDiff ℝ (↑⊤) g ∧ HasCompactSupport g ∧ MeasureTheory.eLpNorm (f - g) 1 MeasureTheory.volume < ENNReal.ofReal ε ∧ MeasureTheory.eLpNorm (f - g) 2 MeasureTheory.volume < ENNReal.ofReal ε