Documentation

Newton.Analysis.Convolution.ApproximateIdentity

structure Newton.IsApproximateIdentity {n : } (ψ : (Fin n)) :

Approximate identity (mollifier) structure.

A function ψ is a mollifier if it is smooth, compactly supported, normalized, and non-negative.

Instances For
    noncomputable def Newton.scaledMollifier {n : } (ψ : (Fin n)) (η : ) :
    (Fin n)

    Scaled mollifier ψ_η.

    ψ_η(x) = η^(-n) ψ(x/η)

    Equations
    Instances For
      theorem Newton.scaledMollifier_nonneg {n : } {ψ : (Fin n)} (hψ_nonneg : ∀ (x : Fin n), 0 ψ x) {η : } (hη_nonneg : 0 η) (x : Fin n) :

      Nonnegativity of the scaled mollifier when ψ ≥ 0 and η ≥ 0.

      theorem Newton.hasCompactSupport_scaledMollifier {n : } {ψ : (Fin n)} ( : HasCompactSupport ψ) {η : } (hη_pos : 0 < η) :

      Compact support of the scaled mollifier under η > 0.

      theorem Newton.tsupport_scaledMollifier_subset {n : } {ψ : (Fin n)} ( : IsApproximateIdentity ψ) {η : } (hη_pos : 0 < η) :

      T-support inclusion for the scaled mollifier: it is contained in the ball of radius η.

      theorem Newton.integral_scaledMollifier_eq_one {n : } {ψ : (Fin n)} ( : IsApproximateIdentity ψ) {η : } (hη_pos : 0 < η) :
      (x : Fin n), scaledMollifier ψ η x = 1

      The total mass of the scaled mollifier is 1.

      theorem Newton.core_indicator_eLpNorm_bound {n : } {p : ENNReal} {coreSet : Set (Fin n)} (h_core_meas : MeasurableSet coreSet) {g : (Fin n)} {δ : } (h_bound : ∀ᵐ (x : Fin n) MeasureTheory.volume.restrict coreSet, g x δ) :
      theorem Newton.mollifier_converges_continuous {n : } (f : (Fin n)) (ψ : (Fin n)) (hf_cont : Continuous f) (hf_compact : HasCompactSupport f) ( : IsApproximateIdentity ψ) (ε : ) :
      ε > 0δ > 0, ∀ (η : ), 0 < ηη < δ∀ (x : Fin n), f x - (y : Fin n), f (x - y) * (scaledMollifier ψ η y) < ε

      Mollifier convergence for continuous functions.

      For f continuous with compact support and ψ an approximate identity: ‖f - f * ψ_η‖_∞ → 0 as η → 0

      theorem Newton.eLpNorm_triangle_inequality {n : } (f g h : (Fin n)) (p : ENNReal) (hp : 1 p) (hfg : MeasureTheory.AEStronglyMeasurable (fun (x : Fin n) => f x - g x) MeasureTheory.volume) (hgh : MeasureTheory.AEStronglyMeasurable (fun (x : Fin n) => g x - h x) MeasureTheory.volume) :
      MeasureTheory.eLpNorm (fun (x : Fin n) => f x - h x) p MeasureTheory.volume MeasureTheory.eLpNorm (fun (x : Fin n) => f x - g x) p MeasureTheory.volume + MeasureTheory.eLpNorm (fun (x : Fin n) => g x - h x) p MeasureTheory.volume

      Triangle inequality for Lp norm.

      ‖f - h‖_p ≤ ‖f - g‖_p + ‖g - h‖_p

      theorem Newton.eLpNorm_triangle_three {n : } (f g ψ φ : (Fin n)) (p : ENNReal) (hp : 1 p) (hfg : MeasureTheory.AEStronglyMeasurable (fun (x : Fin n) => f x - g x) MeasureTheory.volume) (hgψ : MeasureTheory.AEStronglyMeasurable (fun (x : Fin n) => g x - ψ x) MeasureTheory.volume) (hψφ : MeasureTheory.AEStronglyMeasurable (fun (x : Fin n) => ψ x - φ x) MeasureTheory.volume) :
      MeasureTheory.eLpNorm (fun (x : Fin n) => f x - φ x) p MeasureTheory.volume MeasureTheory.eLpNorm (fun (x : Fin n) => f x - g x) p MeasureTheory.volume + MeasureTheory.eLpNorm (fun (x : Fin n) => g x - ψ x) p MeasureTheory.volume + MeasureTheory.eLpNorm (fun (x : Fin n) => ψ x - φ x) p MeasureTheory.volume

      Three-way triangle inequality (used in proof steps).

      ‖f - φ‖_p ≤ ‖f - g‖_p + ‖g - ψ‖_p + ‖ψ - φ‖_p

      This is used in the paper's Section 4.2 for the error analysis.

      theorem Newton.convolution_support_ball_subset {n : } (f g : (Fin n)) (R δ : ) (hf_supp : tsupport f Metric.closedBall 0 R) (hg_supp : tsupport g Metric.closedBall 0 δ) :
      (tsupport fun (x : Fin n) => (y : Fin n), f (x - y) * g y) Metric.closedBall 0 (R + δ)

      Explicit support bound for convolution.

      If supp(f) ⊆ B_R and supp(g) ⊆ B_δ, then supp(f * g) ⊆ B_{R+δ}.

      theorem Newton.mollifier_converges_Lp {n : } (f : (Fin n)) (ψ : (Fin n)) (p : ENNReal) (hp : 1 p) (hp_ne_top : p ) (hf : MeasureTheory.MemLp f p MeasureTheory.volume) ( : IsApproximateIdentity ψ) (ε : ) :
      ε > 0δ > 0, ∀ (η : ), 0 < ηη < δMeasureTheory.eLpNorm (fun (x : Fin n) => f x - (y : Fin n), f (x - y) * (scaledMollifier ψ η y)) p MeasureTheory.volume < ENNReal.ofReal ε

      Mollifier convergence in Lp (general result).

      For f ∈ Lp with 1 ≤ p < ∞ and ψ an approximate identity: ‖f - f * ψ_η‖_p → 0 as η → 0