Element of SU(N) group N×N complex matrix g satisfying:
- Unitary: g g† = 1
- Determinant one: det(g) = 1
Matrix representation
Unitary condition: g g† = 1
Special condition: det(g) = 1
Instances For
Alternative form of unitary condition: g† g = 1
Multiplication
Equations
- Newton.SUNGroup.instMul = { mul := fun (g h : Newton.SUNGroup N) => { matrix := g.matrix * h.matrix, unitary := ⋯, det_one := ⋯ } }
Inverse element
Equations
- Newton.SUNGroup.instInv = { inv := fun (g : Newton.SUNGroup N) => { matrix := g.matrix.conjTranspose, unitary := ⋯, det_one := ⋯ } }
@[simp]
Matrix of inverse element
Adjoint action: g A g⁻¹ = g A g† Adjoint action of SU(N) element g on su(N) element A. The result is again an element of su(N).
Equations
- Newton.adjointAction g A = { matrix := g.matrix * A.matrix * g.matrix.conjTranspose, trace_zero := ⋯, anti_hermitian := ⋯ }
Instances For
@[simp]
Adjoint action by identity is the identity map
Composition rule for adjoint action: Ad(gh)(A) = Ad(g)(Ad(h)(A))
Adjoint action preserves addition
@[simp]
Adjoint action preserves zero
Adjoint action preserves Lie bracket