Documentation

Newton.Gauge.GaugeTransformation

structure Newton.SUNGroup (N : ) :

Element of SU(N) group N×N complex matrix g satisfying:

  1. Unitary: g g† = 1
  2. Determinant one: det(g) = 1
Instances For
    theorem Newton.SUNGroup.ext {N : } {g h : SUNGroup N} (hm : g.matrix = h.matrix) :
    g = h

    SUNGroup equality is matrix equality

    Alternative form of unitary condition: g† g = 1

    Identity element

    Equations

    Multiplication

    Equations
    noncomputable instance Newton.SUNGroup.instInv {N : } :

    Inverse element

    Equations
    @[simp]

    Matrix of identity element

    @[simp]
    theorem Newton.SUNGroup.mul_matrix {N : } (g h : SUNGroup N) :
    (g * h).matrix = g.matrix * h.matrix

    Matrix of multiplication

    @[simp]

    Matrix of inverse element

    @[simp]
    theorem Newton.SUNGroup.mul_one {N : } (g : SUNGroup N) :
    g * 1 = g

    Right identity law

    @[simp]
    theorem Newton.SUNGroup.one_mul {N : } (g : SUNGroup N) :
    1 * g = g

    Left identity law

    @[simp]
    theorem Newton.SUNGroup.mul_inv {N : } (g : SUNGroup N) :
    g * g⁻¹ = 1

    Right inverse law

    @[simp]
    theorem Newton.SUNGroup.inv_mul {N : } (g : SUNGroup N) :
    g⁻¹ * g = 1

    Left inverse law

    theorem Newton.SUNGroup.mul_assoc {N : } (g h k : SUNGroup N) :
    g * h * k = g * (h * k)

    Associativity of multiplication

    noncomputable def Newton.adjointAction {N : } (g : SUNGroup N) (A : SuNAlgebra N) :

    Adjoint action: g A g⁻¹ = g A g† Adjoint action of SU(N) element g on su(N) element A. The result is again an element of su(N).

    Equations
    Instances For
      @[simp]

      Adjoint action by identity is the identity map

      Composition rule for adjoint action: Ad(gh)(A) = Ad(g)(Ad(h)(A))

      theorem Newton.adjointAction.add {N : } (g : SUNGroup N) (A B : SuNAlgebra N) :

      Adjoint action preserves addition

      @[simp]

      Adjoint action preserves zero

      Adjoint action preserves Lie bracket