Documentation

Newton.Gauge.StructureConstants

noncomputable def Newton.adjointAd {N : } (A B : SuNAlgebra N) :

Adjoint ad action: ad(A)(B) = [A, B]

The ad action of su(N) element A on another element B. This defines the map B ↦ [A, B].

Equations
Instances For
    theorem Newton.adjointAd.add {N : } (A B C : SuNAlgebra N) :
    adjointAd A (B + C) = adjointAd A B + adjointAd A C

    ad action preserves addition: ad(A)(B + C) = ad(A)(B) + ad(A)(C)

    theorem Newton.adjointAd.smul {N : } (A : SuNAlgebra N) (r : ) (B : SuNAlgebra N) :
    adjointAd A (r B) = r adjointAd A B

    ad action preserves scalar multiplication: ad(A)(r • B) = r • ad(A)(B)

    @[simp]
    theorem Newton.adjointAd.zero {N : } (A : SuNAlgebra N) :
    adjointAd A 0 = 0

    ad action preserves zero: ad(A)(0) = 0

    @[simp]
    theorem Newton.adjointAd.zero_left {N : } (B : SuNAlgebra N) :
    adjointAd 0 B = 0

    ad action of zero is the zero map: ad(0)(B) = 0

    @[simp]
    theorem Newton.adjointAd.self {N : } (A : SuNAlgebra N) :
    adjointAd A A = 0

    ad action on self is zero: ad(A)(A) = 0

    Antisymmetry of ad action: ad(A)(B) = -ad(B)(A)

    Leibniz rule for ad action (derivation property)

    ad(A)([B, C]) = [ad(A)(B), C] + [B, ad(A)(C)]

    This follows directly from the Jacobi identity.

    Composition rule for ad action

    [[A, B], C] = [A, [B, C]] - [B, [A, C]]

    This is a fundamental property of the adjoint representation of Lie algebras.

    theorem Newton.adjointAd_add_left {N : } (A B C : SuNAlgebra N) :
    adjointAd (A + B) C = adjointAd A C + adjointAd B C

    Left linearity of ad action: ad(A + B) = ad(A) + ad(B)

    theorem Newton.adjointAd_smul_left {N : } (r : ) (A B : SuNAlgebra N) :
    adjointAd (r A) B = r adjointAd A B

    Left scalar multiplication of ad action: ad(r • A) = r • ad(A)

    Killing form expressed via ad action

    The relation B(X, Y) = Tr(XY) holds.

    noncomputable def Newton.adjointAd2 {N : } (A B : SuNAlgebra N) :

    Double application of ad action: ad(A)(ad(A)(B)) = [A, [A, B]]

    Equations
    Instances For

      Expansion of ad(A)^2(B) = [A, [A, B]]

      @[simp]
      theorem Newton.adjointAd2_self {N : } (A : SuNAlgebra N) :

      ad(A)^2(A) = 0 (from Jacobi identity)