Documentation

Newton.MeasureTheory.Function.LpSpace.Duality

Duality arguments for L^p spaces #

This auxiliary file collects statements describing how duality interacts with L^p spaces. The full proofs are deferred, but the theorem signatures are provided so that other files (notably the Minkowski integral inequality) can depend on them while development is in progress.

theorem Newton.lp_duality_pairing {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (_hp : 1 < p) (_hq : 1 < q) (hpq : IsConjugateExponent p q) {f g : α} (hf : MeasureTheory.MemLp f p μ) (hg : MeasureTheory.MemLp g q μ) :

Hölder's inequality expressed as a dual pairing between L^p and L^q.

theorem Newton.normalized_eLpNorm_toReal_eq_one {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p : ENNReal) {f : α} (hf_ne_zero : (MeasureTheory.eLpNorm f p μ).toReal 0) :
(MeasureTheory.eLpNorm (fun (x : α) => 1 / (MeasureTheory.eLpNorm f p μ).toReal * f x) p μ).toReal = 1

Scaling f by the reciprocal of its L^p norm yields a unit eLpNorm.

theorem Newton.dual_candidate_memLp {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hp : 1 < p) (hq : 1 < q) (hpq : IsConjugateExponent p q) {f : α} (hf : MeasureTheory.MemLp f p μ) :
MeasureTheory.MemLp (fun (x : α) => (f x).sign * |f x| ^ (p.toReal - 1)) q μ

The standard Hölder extremiser associated to f lies in L^q.

theorem Newton.dual_candidate_pairing_eq {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hp : 1 < p) (hq : 1 < q) (hpq : IsConjugateExponent p q) {f : α} (hf : MeasureTheory.MemLp f p μ) (hf_norm : (MeasureTheory.eLpNorm f p μ).toReal = 1) :
(x : α), f x * ((f x).sign * |f x| ^ (p.toReal - 1)) μ = (MeasureTheory.eLpNorm f p μ).toReal * (MeasureTheory.eLpNorm (fun (x : α) => (f x).sign * |f x| ^ (p.toReal - 1)) q μ).toReal (MeasureTheory.eLpNorm (fun (x : α) => (f x).sign * |f x| ^ (p.toReal - 1)) q μ).toReal = 1

The Hölder extremiser realises the dual pairing for a unit L^p function.

theorem Newton.exists_dual_pair_for_unit {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hp : 1 < p) (hq : 1 < q) (hpq : IsConjugateExponent p q) {f : α} (hf : MeasureTheory.MemLp f p μ) (hf_norm : (MeasureTheory.eLpNorm f p μ).toReal = 1) :
∃ (g : α), MeasureTheory.MemLp g q μ (MeasureTheory.eLpNorm g q μ).toReal = 1 MeasureTheory.Integrable (fun (x : α) => f x * g x) μ (x : α), f x * g x μ = (MeasureTheory.eLpNorm f p μ).toReal * (MeasureTheory.eLpNorm g q μ).toReal

For a unit L^p element, produce a dual element saturating Hölder's inequality.

theorem Newton.integral_scaling_of_normalization {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {f g : α} {c : } (hc_ne_zero : c 0) (h_int : MeasureTheory.Integrable (fun (x : α) => f x * g x) μ) :
(x : α), f x * g x μ = c * (x : α), 1 / c * f x * g x μ

Pulling out a scalar when comparing f and its normalisation.

theorem Newton.lp_duality_exists_norm_one_attainer {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hp : 1 < p) (hq : 1 < q) (hpq : IsConjugateExponent p q) {f : α} (hf : MeasureTheory.MemLp f p μ) (hf_ne_zero : (MeasureTheory.eLpNorm f p μ).toReal 0) :
∃ (g : α), MeasureTheory.MemLp g q μ (MeasureTheory.eLpNorm g q μ).toReal = 1 MeasureTheory.Integrable (fun (x : α) => f x * g x) μ (x : α), f x * g x μ = (MeasureTheory.eLpNorm f p μ).toReal

Produce a dual element with unit L^q norm attaining the L^p norm of f.

theorem Newton.lp_duality_norm_le_of_pairing_bound {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} (p q : ENNReal) (hp : 1 < p) (hq : 1 < q) (hpq : IsConjugateExponent p q) {f : α} (hf : MeasureTheory.MemLp f p μ) {B : } (hB : ∀ (g : α), MeasureTheory.MemLp g q μ(MeasureTheory.eLpNorm g q μ).toReal 1MeasureTheory.Integrable (fun (x : α) => f x * g x) μ| (x : α), f x * g x μ| B) :

Control the L^p norm of f by bounding pairings against the unit ball of L^q.

theorem Newton.eLpNorm_norm_integral_lt_top {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {β : Type u_2} [MeasurableSpace β] {ν : MeasureTheory.Measure β} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] (p : ENNReal) (hp : 1 < p) (hp_ne_top : p ) {F : αβE} (hF_meas : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν)) (hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν)) (hF_memLp : ∀ᵐ (y : β) ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ) (hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν) :
MeasureTheory.eLpNorm (fun (x : α) => (y : β), F x y ν) p μ <
theorem Newton.memLp_norm_integral {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {β : Type u_4} [MeasurableSpace β] {ν : MeasureTheory.Measure β} [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] (p : ENNReal) (hp : 1 p) (hp_ne_top : p ) {F : αβE} (hF_meas : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν)) (hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν)) (hF_memLp : ∀ᵐ (y : β) ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ) (hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν) :
MeasureTheory.MemLp (fun (x : α) => (y : β), F x y ν) p μ