theorem
Newton.integral_norm_eq_toReal_lintegral
{α : Type u_1}
[MeasurableSpace α]
{μ : MeasureTheory.Measure α}
{E : Type u_3}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : α → E}
(hf : MeasureTheory.Integrable f μ)
:
Relate the integral of the norm of an integrable function with the corresponding lintegral.
theorem
Newton.minkowski_integral_inequality
{α : Type u_1}
{β : Type u_2}
[MeasurableSpace α]
[MeasurableSpace β]
{μ : MeasureTheory.Measure α}
{ν : MeasureTheory.Measure β}
{E : Type u_3}
[NormedAddCommGroup E]
[MeasureTheory.SFinite μ]
[MeasureTheory.SFinite ν]
[NormedSpace ℝ E]
(p : ENNReal)
(hp : 1 ≤ p)
(hp_ne_top : p ≠ ⊤)
(F : α → β → E)
(hF : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν))
(hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν))
(hF_int : ∀ᵐ (y : β) ∂ν, MeasureTheory.Integrable (fun (x : α) => F x y) μ)
(hF_memLp : ∀ᵐ (y : β) ∂ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ)
(hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν)
:
MeasureTheory.eLpNorm (fun (x : α) => ∫ (y : β), F x y ∂ν) p μ ≤ ENNReal.ofReal (∫ (y : β), (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal ∂ν)
Minkowski's integral inequality (general form with eLpNorm).
For 1 ≤ p < ∞ and measurable F : α × β → E, ‖∫ F(·, y) dν(y)‖{L^p(μ)} ≤ ∫ ‖F(·, y)‖{L^p(μ)} dν(y)
This is the key inequality for proving Young's inequality for convolution.
theorem
Newton.convolution_kernel_aestronglyMeasurable
{G : Type u_4}
[NormedAddCommGroup G]
[MeasurableSpace G]
[MeasurableAdd₂ G]
[MeasurableNeg G]
(μ : MeasureTheory.Measure G)
[MeasureTheory.SFinite μ]
[μ.IsAddRightInvariant]
(f g : G → ℂ)
(hf : MeasureTheory.AEStronglyMeasurable f μ)
(hg : MeasureTheory.AEStronglyMeasurable g μ)
:
MeasureTheory.AEStronglyMeasurable (fun (q : G × G) => f (q.1 - q.2) * g q.2) (μ.prod μ)
Almost everywhere measurability of the convolution kernel produced from L^p data. This lemma
packages the hypotheses needed to apply Minkowski's integral inequality in the Young inequality
arguments.
theorem
Newton.convolution_kernel_integrable
{G : Type u_4}
[NormedAddCommGroup G]
[MeasurableSpace G]
[MeasurableAdd₂ G]
[MeasurableNeg G]
(μ : MeasureTheory.Measure G)
[MeasureTheory.SFinite μ]
[μ.IsAddRightInvariant]
(f g : G → ℂ)
(hf : MeasureTheory.Integrable f μ)
(hg : MeasureTheory.Integrable g μ)
:
MeasureTheory.Integrable (fun (q : G × G) => f (q.1 - q.2) * g q.2) (μ.prod μ)
Integrability of the convolution kernel assuming the factors themselves are integrable. This is the basic input needed for the convolution estimates below.