Documentation

Newton.Analysis.Convolution.Minkowski

theorem Newton.integral_norm_eq_toReal_lintegral {α : Type u_1} [MeasurableSpace α] {μ : MeasureTheory.Measure α} {E : Type u_3} [NormedAddCommGroup E] [NormedSpace E] {f : αE} (hf : MeasureTheory.Integrable f μ) :
(x : α), f x μ = (∫⁻ (x : α), f x‖ₑ μ).toReal

Relate the integral of the norm of an integrable function with the corresponding lintegral.

theorem Newton.minkowski_integral_inequality {α : Type u_1} {β : Type u_2} [MeasurableSpace α] [MeasurableSpace β] {μ : MeasureTheory.Measure α} {ν : MeasureTheory.Measure β} {E : Type u_3} [NormedAddCommGroup E] [MeasureTheory.SFinite μ] [MeasureTheory.SFinite ν] [NormedSpace E] (p : ENNReal) (hp : 1 p) (hp_ne_top : p ) (F : αβE) (hF : MeasureTheory.AEStronglyMeasurable (Function.uncurry F) (μ.prod ν)) (hF_prod : MeasureTheory.Integrable (Function.uncurry F) (μ.prod ν)) (hF_int : ∀ᵐ (y : β) ν, MeasureTheory.Integrable (fun (x : α) => F x y) μ) (hF_memLp : ∀ᵐ (y : β) ν, MeasureTheory.MemLp (fun (x : α) => F x y) p μ) (hF_norm : MeasureTheory.Integrable (fun (y : β) => (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal) ν) :
MeasureTheory.eLpNorm (fun (x : α) => (y : β), F x y ν) p μ ENNReal.ofReal ( (y : β), (MeasureTheory.eLpNorm (fun (x : α) => F x y) p μ).toReal ν)

Minkowski's integral inequality (general form with eLpNorm).

For 1 ≤ p < ∞ and measurable F : α × β → E, ‖∫ F(·, y) dν(y)‖{L^p(μ)} ≤ ∫ ‖F(·, y)‖{L^p(μ)} dν(y)

This is the key inequality for proving Young's inequality for convolution.

Almost everywhere measurability of the convolution kernel produced from L^p data. This lemma packages the hypotheses needed to apply Minkowski's integral inequality in the Young inequality arguments.

Integrability of the convolution kernel assuming the factors themselves are integrable. This is the basic input needed for the convolution estimates below.